A Truncated Newton Method with Nonmonotone Line Search for Unconstrained Optimization
نویسندگان
چکیده
In this paper, an unconstrained minimization algorithm is defined in which a nonmonotone line search technique is employed in association with a truncated Newton algorithm. Numerical results obtained for a set of standard test problems are reported which indicate that the proposed algorithm is highly effective in the solution of illconditioned as well as of large dimensional problems.
منابع مشابه
A Free Line Search Steepest Descent Method for Solving Unconstrained Optimization Problems
In this paper, we solve unconstrained optimization problem using a free line search steepest descent method. First, we propose a double parameter scaled quasi Newton formula for calculating an approximation of the Hessian matrix. The approximation obtained from this formula is a positive definite matrix that is satisfied in the standard secant relation. We also show that the largest eigen value...
متن کاملA nonmonotone truncated Newton-Krylov method exploiting negative curvature directions, for large scale unconstrained optimization
We propose a new truncated Newton method for large scale unconstrained optimization, where a Conjugate Gradient (CG)-based technique is adopted to solve Newton’s equation. In the current iteration, the Krylov method computes a pair of search directions: the first approximates the Newton step of the quadratic convex model, while the second is a suitable negative curvature direction. A test based...
متن کاملThe Global Convergence of Self-Scaling BFGS Algorithm with Nonmonotone Line Search for Unconstrained Nonconvex Optimization Problems
The self-scaling quasi-Newton method solves an unconstrained optimization problem by scaling the Hessian approximation matrix before it is updated at each iteration to avoid the possible large eigenvalues in the Hessian approximation matrices of the objective function. It has been proved in the literature that this method has the global and superlinear convergence when the objective function is...
متن کاملThe Global Convergence of Self-scale BFGS Algorithm with Nonmonotone Line Search for Unconstrained Nonconvex Optimization Problems
The self-scaling quasi-Newton method solves an unconstrained optimization problem by scaling the Hessian approximation matrix before it is updated at each iteration to avoid the possible large eigenvalues in the Hessian approximation matrices of the objective function. It has been proved in the literature that this method has the global and superlinear convergence when the objective function is...
متن کاملINSEAN National Research Center for Ships and Marine Systems INSEAN Technical Report 2008-035/rt A nonmonotone truncated Newton-Krylov method exploiting negative curvature directions, for large scale unconstrained optimization: complete results
We propose a new truncated Newton method for large scale unconstrained optimization, where a Conjugate Gradient (CG)-based technique is adopted to solve Newton’s equation. In the current iteration, the Krylov method computes a pair of search directions: the first approximates the Newton step of the quadratic convex model, while the second is a suitable negative curvature direction. A test based...
متن کامل